DeepStack vytvořil další historický milník, kdy lidé v populárních hrách podlehli počítačům. Po backgammonu, dámě, šachu a go je tedy dalším v pořadí no-limit poker. Oproti předchozím hrám je tu však jeden zásadní rozdíl. „Poker byl dlouholetou výzvou pro umělou inteligenci,“ říká Michael Bowling, profesor z Albertské univerzity, který výzkumný tým vedl. „Je to typická hra s neúplnou informací, ve které hráči během hry nemají stejnou informaci a pohled na hru.“
Fakt, že hráč nevidí karty oponenta a oponent nevidí jeho karty, dělá problém výrazně složitějším z teoretického hlediska. Na druhou stranu je však tato neurčitost informace v reálném světě běžná. Matematické modely her umožňují popsat situace z ekonomie, aukcí, síťové bezpečnosti, ochrany důležitých cílů nebo kontroly jízdného. „V těchto reálných situacích se jednotlivé strany jen velmi zřídka rozhodují na základě úplných a totožných informací. Proto je pokrok v řešení her s neúplnou informací zásadní pro praktické aplikace,“ vysvětluje Michael Bowling.
Náhodou k úspěchu
Další z českých vědců, Viliam Lisý z Centra umělé inteligence na katedře počítačů Fakulty elektrotechnické ČVUT, v té době na Albertské univerzitě již působil v rámci své post-doktorské stáže: „Albertská univerzita má jednu z nejvlivnějších výzkumných skupin v oblasti výpočetní teorie her. Když mi Michael Bowling po doktorátu v této oblasti nabídl možnost absolvovat u něj post-doktorskou stáž, rozhodování bylo jednoduché.“
Jednoduchý, elegantní, chytrý
„Algoritmus DeepStacku je přelomový, protože se nám podařilo přenést myšlenky, které byly klíčové v hrách s úplnou informací, do světa her s neúplnou informací. Doposud nebylo jasné, zda je podobný přístup vůbec možný,“ říká Schmid. DeepStack umožňuje vypočítat vhodnou strategii pro situaci v pokeru až v momentě, kdy situace nastane, tedy bez nutnosti uvažovat o úplně celé hře předem naráz, což byl doteď převládající přístup.
Tato zásadní změna principů řešení byla umožněna mimo jiné rozvojem strojového učení pomocí hlubokých neuronových sítí. Tato neuronová síť v případě DeepStacku vyhodnocuje jednotlivé pokerové situace, a jde tedy o jistou formu intuice, kterou algoritmus využívá pro správná rozhodnutí. „Podobně jako v případě člověka, musí i DeepStack svoji intuici trénovat hraním mnoha pokerových partií. Naše síť v průběhu učení viděla miliony pokerových situací,“ dodává Moravčík.

Horizont: Umělá inteligence jako zkáza lidstva?
„Schopnost uvažovat o jednotlivých pokerových situacích až v momentě, kdy nastanou, je klíčová pro složité hry, jako je no-limit Texas Hold'em, ve kterých může nastat mnohem víc různých situací, než je počet atomů ve vesmíru,“ vysvětluje Lisý. I takto složitou hru hraje DeepStack rychleji než lidi. V průměru potřebuje jen tři sekundy „myšlení“ na každé rozhodnutí a funguje i na běžném laptopu s výkonnější grafickou kartou od Nvidie, kterou používá pro své výpočty.
DeepStack hrál proti skupině profesionálních hráčů pokeru v prosinci 2016. Třicet tři hráčů vybraných Mezinárodní federací pokeru pocházelo ze sedmnácti států. Každý hráč měl možnost hrát 3000 her během čtyř týdnů. DeepStack tyto hráče v průměru porazil s obrovskou převahou. Každého z jedenácti hráčů, kteří dohráli všech 3000 her, porazil i individuálně a pouze v jednom případě výhra nebyla statisticky signifikantní. DeepStack je tedy první počítačový program, který porazil profesionální hráče v dvouhráčovém no-limit Texas hold'em pokeru.